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Abstract. Using the pseudo-spectral method for wave-packet evolution, we formulate and
implement anewtheoretical approach for studying the Bloch oscillation effect in a general number
of dimensions. For this purpose, a novel recursive formula is obtained in the representation of
Wannier functions for the infinitesimal time evolution of an electronic wave packet within the
single-band approximation. This formula is valid for general position-dependent applied electric
fields and arbitrary initial wave-packet shapes and crystal structures, and can also be generalized for
time-dependent fields. For a tight-binding simple ‘cubium’ band, the infinitesimal time evolution
can always be expressed in terms of Bessel functions of integer order; and for the ‘empty-lattice
model’ band it can be expressed in terms of Fresnel functions for arbitrary electric fields also.
As a further analytical application of our formalism, we derive an exact (finite-time) wave-packet
evolution for the homogeneous and static electric field in the simple ‘cubium’ band. For this case,
an estimate of the numerical error of the pseudo-spectral method is obtained for the mean position
of the wave packet. As an illustrative example of the numerical implementation of our theoretical
formalism, we present a simple one-dimensional numerical simulation for a Gaussian wave packet
moving in a parabolic potential well. Finally, a general proof of the unitarity of the predicted time
evolution is also presented, and different properties of our formalism pointed out.

1. Introduction

The electronic transport properties of semiconductor superlattice (SSL) structures have been
the subject of intensive research in the last few years, both experimental and theoretical [1].
One of the main theoretical reasons for this has been the realization that such SSL structures
constitute a physical framework within which the controversies [2] about the long-ago-
predicted Bloch oscillation effect [3] could be settled. For studying the quantum dynamics
of the electronic wave packet within the SSL structure, the most commonly used tool is the
numerical simulation of the time-dependent Schrödinger equation by means of well known
algorithms such as Cayley’s or Crank-Nicholson’s methods [4], in which the quantum evolution
operator exp(−iH 1t/h̄) (described by (1) below) is approximated by the strictly unitary
operator(1 + iH 1t/2h̄)−1(1− iH 1t/2h̄) + O(1t3), which ensures the norm conservation
of the wavefunction at all times. If a physical model is assumed, such as the usual single-band
tight-binding model [5], where a one-dimensional (D = 1) infinite crystal is in the presence
of a homogeneous external electric field, then the time-dependent Schrödinger equation can
be represented by a system of coupled difference equations which can be solved exactly,

† E-mail address:sanjines@usb.ve.
‡ E-mail address:jpgal@usb.ve.
§ Telephone: (58-2)9063600; fax: (58-2)9063601.

0953-8984/99/183729+14$19.50 © 1999 IOP Publishing Ltd 3729
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thus allowing a thorough analytical formulation of the problem, where exact predictions
for quantities such as the wave packet’s position expectation value and its width parameter
are possible for arbitrary times [5, 6]. Departures from this scheme are concerned mainly
with the dynamical behaviour of the electronic wave packet within SSL structures in the
presence of harmonically oscillating fields (giving rise to the well known phenomenon of
‘dynamic localization’ [7]), and SSL structures with isolated impurities either in the presence
of combined homogeneous and harmonically oscillating electric fields inD = 1 dimensions [8]
or homogeneous electric fields inD = 2 dimensions [9].

In this paper we set about developing a new theoretical approach for the study of the
above-mentioned Bloch oscillation effect. This approach will yield a formula (equation (13)
below) for the infinitesimal time evolution of an electronic wave packet defined in a general
Bravais lattice inD = 1, 2, 3 dimensions, valid (within the single-band approximation, i.e.,
the subspace of Wannier functions of only one band [5]) for general position-dependent static
(and time-dependent) electric fields, initial wave-packet shapes, and band structures, not being
restricted, for instance, to the usual nearest-neighbour tight-binding model [5]. The above-
mentioned new approach consists in the application of the pseudo-spectral method [10, 11]
to the discrete nature of the Bravais lattice. Although spectral and pseudo-spectral methods
(see [12] and references therein) have been widely used to study wave-packet evolution, they
have not, to our knowledge, been previously applied to the Bloch oscillation effect. Hence
the motivation for our approach. For a static and spatially homogeneous electric field, our
formula can be iteratively evaluated exactly for an arbitrary time and be compared with well
known tight-binding analytical results (recent reviews are given in [5, 8]); however, for an
inhomogeneous field, we simulate numerically the time evolution of the wave packet without
using, for example, any fast-Fourier-transform [4, 11] numerical routines. To this effect,
as an interesting numerical example, we present an illustrative application for an electronic
wave packet in the presence of a one-dimensional parabolic potential well [13], previously
studied and discussed in the literature [13] within the context of the ‘few-body problem on a
lattice’ [14]. Within this context [14], in which interband matrix elements are inconsequential,
i.e., the single-band approximation, we shall develop our theoretical formalism below with
an emphasis on analytical results. Although Cayley’s or Crank-Nicholson’s state-of-the-art
numerical methods [4] yield ‘effortless’ solutions to the time-dependent Schrödinger equation,
our pseudo-spectral theoretical formalism below also turns out to have interesting usefulness
as an alternative and complementary numerical method. As such, we shall present it here.

2. Formalism

The formal solution of the time-dependent Schrödinger equation i ¯h ∂9/∂t = H9 for a general
time-independent one-particle HamiltonianH is given by [15]

9(r, t) = e−iH(t−t0)9(r, t0) (1)

(whereh̄ = 1 for simplicity). Within the single-band approximation [14], let us separate
the HamiltonianH into a sum of a ‘kinetic’ energy (or band energy)T (p) operator and an
external potential energyV (r) operator,H = T (p) + V (r). Here, the spatially periodic
character of the superlattice (SSL) potential is incorporated withinT (p), while the external
potential energyV (r) describes any externally applied forces (such as electric field terms) not
intrinsic to the superlattice. Now let the timet0 be increased by an infinitesimal amount1t ,
with t = t0 +1t ; by the use of theBaker–Campbell–Hausdorffformula [16], the evolution
operator exp(−iH 1t) in (1) can be time split and approximated to order(1t)3 by

9(r, t0 +1t) = e−iλV (r)e−2iλT (p)
[
e−iλV (r)9(r, t0)

]
+ O(1t3) (2)
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whereλ ≡ 1t/2. If the bracketed term in (2) is expressed as the inverse of a spatial
Fourier transformF , then the operator exp(−2iλT (p)), which contains the spatial derivative
operator throughp = −i∇, will act only on the spatial part of the transform resulting in
exp(−2iλT (k)) exp(ik · r). This is so for the class of kinetic energy operatorsT (p) that
we will use throughout this paper and that admit a power expansion as in (4) below. Thus,
equation (2) can be written as a sequence of nested direct and inverse Fourier transforms:

9(r, t0 +1t) = e−iλV (r)F−1
[
e−2iλT (k)F(e−iλV (r)9(r, t0))

]
+ O(1t3). (3)

Equation (3) is the basis of the pseudo-spectral method [10], to be applied in this paper to a
quite general ‘single-band’ kinetic energyT (k), which may,for example, be of the form [14]

T (k) =
∑
l,m

tlmeik·(Rl−Rm) (4)

where theRs belong to a Bravais lattice, andT (k) in (4), as the lattice Fourier transform of
the ‘hopping’ matrix elementstlm, has the periodicity of the corresponding reciprocal lattice
with vectorsK, i.e., T (k + K) = T (k). Consequently, exp(−2iλT (k)) in (3) is also a
periodic function in the reciprocal space and can be expanded in a Fourier series [17] as

e−2iλT (k) =
∑
R′

[
1

v∗

∫
1−BZ

dk′ e−ik′·R′e−2iλT (k′)
]

eik·R′ (5)

wherev andv∗ = (2π)D/v are respectively the volumes of the primitive cells in the direct
and reciprocal lattices inD = 1, 2, 3 dimensions, and the integral in (5) is performed over the
first Brillouin zone (1-BZ). Although the implementation of the pseudo-spectral method by
(3) for a quadratic kinetic energy is well known [11], we have not found in the literature its
application to a periodic kinetic energy. This periodicity in reciprocal space is sufficient for
the validity of (5),independently of the precise form ofT (k).

The state9(r, t) in (3) can be written [6,8] as a linear combination of a complete set of
orthonormal Wannier functions, whose properties are, for instance, known to be ideally suited
for representing initial wavefunctions9(r, t0) that appear to arise in relevant experiments in
SSL [18]. Thus, we can write

9(r, t) =
∑
l,R

Cl,R(t)8l(r −R) (6)

where the Wannier function8l(r−R) is typically localized about the lattice siter = R with
an extent of the order of the lattice constant [19]. Such a Wannier function is to be labelled with
a band index denoted byl, but since we are considering in this work the electron’s dynamics
within a single band, the indexl will be hereafter dropped. With the main possible exception
of the case for extremely high electric fields, for which interband tunnelling does become
relevant, this restriction in our formalism, namely, that of the single-band approximation, is
known to be relatively unimportant [5,6].

The substitution of (5) and (6) into (3) yields (up to O(1t3))

9(r, t0 +1t) = e−iλV (r) 1

v∗v

∫ ∞
−∞

dk eik·r
∫ ∞
−∞

dr′ e−ik·r′e−iλV (r′)

× 1

v∗
∑
R′

∫
1−BZ

dk′ e−ik′·R′e−2iλT (k′)eik·R′
∑
R

CR(t0)8(r
′ −R). (7)

By first performing the integration in the variablek, and making use of∫ ∞
−∞

dk eik·(r−r′+R′) = v∗vδ(r − r′ +R′) (8)
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and then integrating the Dirac delta functionδ(r − r′ + R′) in the variabler′, equation (7)
simplifies considerably to

9(r, t0 +1t) = e−iλV (r)
∑
R′R

CR(t0)F (R
′)e−iλV (r+R′)8(r +R′ −R) (9)

whereF(R′) has been defined as

F(R′) ≡ 1

v∗

∫
1−BZ

dk′ e−ik′·R′e−2iλT (k′). (10)

It is now convenient to defineR′′ ≡ R−R′, so as to be able to rewrite (9) in the form

9(r, t0 +1t) =
∑
R′′

[∑
R

CR(t0)F (R−R′′)e−iλ[V (r)+V (r+R−R′′)]
]
8(r −R′′). (11)

For the expression (11) to be of the appropriate necessary form of (6), i.e.,

9(r, t0 +1t) =
∑
R′′
CR′′(t0 +1t)8(r −R′′) (12)

the expansion coefficientsCR′′(t0 +1t) must be given by

CR′′(t0 +1t) =
∑
R

CR(t0)e
−iλ(V (R)+V (R′′))F (R−R′′) (13)

and are to be obtained from (11) by restricting the wavefunction9(r, t0 +1t) to the Hilbert
subspace ofH [13, 14] which corresponds to that of the Bravais lattice points, around which
the Wannier functions8(r −R′′) are strongly localized; i.e., by settingr = R′′ in (11) for
the square-bracketed coefficients.

Equation (13), which gives the wave-packet coefficients defined on the lattice at a time
infinitesimally later than the initialt0, is valid for quite general external potentialsV (r)
(associated with position-dependent constant electric fields and/or inhomogeneities), crystal
lattices, initial wave-packet shapes, and single-band dispersionsT (k), thus limiting (13) to
intraband dynamical evolutions only. Interestingly, the integral ‘kernel’ functionF(R−R′′) in
(10) does not depend upon the external potentialV (r). It is characteristically associated with
the band and crystal structuresonly, as is obvious from its definition in (10) as an integral over
the first Brillouin zone of the crystal lattice. Furthermore, although (13) is formally correct
only to order O(1t3), it describes nevertheless a rigorously unitary time evolution as will be
shown in appendix B. In the following we will apply (13) to some relevant cases.

3. Analytical applications

First, consider the dynamics of a single electron in the tight-binding three-dimensional band
known as the ‘cubium’ band, with isotropic nearest-neighbour hopping matrix elementA and
primitive-cell constanta in a simple cubic lattice. Then, the integral in (13) is to be evaluated
for a kinetic energy

T (k) = −2A(cos(ak1) + cos(ak2) + cos(ak3)) (14)

wherek1, k3, k3 are the components ofk along the simple cubic crystal axes, leading to the
result

CR′(t0 +1t) =
∑
R

C0
Re−iλ(V (R)+V (R′))in−n

′+m−m′+p−p′Jn−n′(z)Jm−m′(z)Jp−p′(z) (15)

with C0
R ≡ CR(t0). In (15), theJn(z) are Bessel functions of the first kind and integer order

n, with infinitesimal argumentz = 4Aλ, and given by the integral representation [20]

Jn(z) = i−n

π

∫ π

0
eiz cosθ cos(nθ) dθ. (16)
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The integersn,m, p specify the direct lattice pointR = nx̂1 +mx̂2 + px̂3. Thus, the infinit-
esimal time evolution can be expressed for the cubium band in terms of Bessel functions for
quite arbitrary one-body potentialsV (R) acting on the electron, in contrast with the finite-time
evolution [5], wherein Bessel functions appear mostly for homogeneous electric fields. The
infinitesimal evolution of a normalized wave packet within a single band can also be checked
to be unitary from (15), i.e.,∑

R′
|CR′(t0 +1t)|2 =

∑
R

|C0
R|2 = 1

by using well known [20] analytical properties of Bessel functions.
For a constant and homogeneous force field of magnitudeα = e|E|, the value of the

potential energy operatorV (r) at the simple-cubic lattice pointR is

V (R) = α(n cos81 +m cos82 + p cos83)

with81,82,83 the director angles of the associated vector electric fieldE (the lattice constant
a has been set toa = 1 for simplicity, and−e is the electronic electric charge). In this particular
case, for at0 = 0 initial wave packet inD = 3 dimensions of the formC0

R = C0
nC

0
mC

0
p, the

sum over the lattice points in (15) can be decoupled into three individual sums. After some
interesting algebra, we have found that (when1t → 0) each sum can be expressed exactly
for any time by means of the addition theorem for Bessel functions used iteratively (Graf’s
formula [20]). As shown in appendix A, the final analytical result is

CR′(t) =
∑
R

C0
R exp

{−iα
[
(n + n′) cos81 + (m +m′) cos82 + (p + p′) cos83

]
t/2
}

× in−n
′+m−m′+p−p′Jn−n′(ξ1)Jm−m′(ξ2)Jp−p′(ξ3) (17)

whereξj = (4A/(α cos8j)) sin( 1
2αt cos8j); j = 1, 2, 3. It is worth checking that inD = 3

dimensions, equation (17) predicts the wave packet’s periodic Bloch oscillation whenever the
electric fieldE is oriented along the directions of the reciprocal-lattice vectors [17], that is,
cos81 = q/γ , cos82 = r/γ , cos83 = s/γ , whereq, r, s are non-zero, mutually prime
integers, andγ ≡

√
q2 + r2 + s2; thus, one can verify thatCR(2πγ/α) = C0

R. For an electric
field E with no components along a given lattice axis, some of the integersq, r, s will be
zero, and the corresponding Bessel functions in (17) will approach zero with growing timet ,
giving rise to the well known dispersion effect of the wave packet in the direction of the absent
electric field component [6]. An adaptation of (17) forD = 1, e.g. along theX-axis, follows
from disallowing the propagation of the wave packet in theY - andZ-axis directions, by taking
the corresponding hopping matrix elementsA = 0 in these directions. For the wave packet
propagating only along theX-axis, equation (17) takes the form

Cn′(t) =
∑
n

C0
ne
−iα(n+n′)t/2in−n

′
Jn−n′

[
4A

α
sin

(
1

2
αt

)]
(18)

which reproduces the most relevant features of the wave packet’s dynamics forD = 1 under
the influence of homogeneous and constant electric fields (see [5] and references therein),
namely:

(a) if t = τB ≡ 2π/α in (18), thenCn(τB) = C0
n (Bloch oscillations with periodτB);

(b) by takingC0
n in (18) to beC0

n = Jn−m(2A/α) and using Graf’s addition formula for Bessel
functions [20], the eigenfunctions ofH can be shown from (18) to be given by∑

n

Jn−m(2A/α)8(x − n)

with equidistant energy eigenvaluesEm = αm (the Wannier–Stark ladder), and time
evolution forCn(t), given byCn(t) = exp(−iαmt)C0

n.
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To our knowledge, neither (17) nor (18) have been previously derived in the literature by
making use of the pseudo-spectral method, as here presented in a novel manner (see, e.g., [5]
and references therein). Another relevant case where the ‘kernel’ integralF(R−R′′) in (13)
can be evaluated analytically is that of the ‘empty-lattice model’ band. As shown in appendix C,
the corresponding kernel can then be easily expressed in terms of the Fresnel integrals [20].
Other analytical cases for different crystal and/or band structures might also be possible, but
this remains here as an interesting open problem.

4. Numerical application and conclusions

Our numerical application is that of an inhomogeneous electric field forD = 1 (e.g., along
theX-axis) derivable from a one-dimensional parabolic potential well of the form

Vn = αn +
1

2
Kn2 (19)

at thenth lattice site. Such a potential has already been suggested in [13] and [14] so as to
include the effects of a uniform and constant charge density on the dynamics of an electron
in a lattice in a direction perpendicular to the surface of the crystal. In figure 1, we show
some results of applying (15) to the case of the potential in (19), finding (where applicable)
excellent numerical agreement with previous analytical work [13] concerning the dynamical
(twofold) behaviour of a Gaussian wave packet in the presence of the parabolic potential of
(19). These behaviours are the ‘continuum regime’ and the ‘Bloch regime’, depending upon the
wave packet’s initial position with respect to the equilibrium point of the ‘harmonic oscillator
on a lattice’ [13] described by (19). In the first regime, the oscillator has (witha = 1) a
simple-harmonic period given byτ = π√2/(KA) , while in the second (or Bloch regime), it
oscillates with a rather different period,τB = 2π/α, and amplitude,|2A/α|, both associated
with an effectively different potential well. The various properties of these two regimes, as
well as the ‘bifurcation’ that links the two, are quite accurately described and explained by the
corresponding ‘semiclassical’ model [17] approximation. For further details, the reader is here
referred to reference [13], where the bifurcation, akin to that of a pendulum, is described at
length. In fact, the entire problem can be made isomorphic to that of a simple pendulum by an
appropriate canonical transformation [13,14]. The ‘continuum regime’ and the ‘Bloch regime’
then correspond to the ‘oscillating’ and to the ‘rotating’ pendulum behaviours, respectively.
Some physical insight as regards such bifurcation might be worth mentioning: given a certain
spatial charge density (i.e., a certain parabolic potential well) one can modulate the value of
α by changing the external electric field, and thus, by going from the continuum over to the
Bloch regime, the predicted oscillations should go through an irregular or highly non-periodic
transitional state, as shown in figure 1(c).

In addition, our simulations show that the amplitude of the wave packet’s mean position [5]

z(t) ≡ 〈x〉 =
∑
n

n|Cn(t)|2

periodically recovers almost its initial value after damping intervals—a result not previously
found by Gallinar and Chalbaud [13], because these authors did not consider the long-term
time evolution of their wave packets. Near the bifurcation point predicted by the semiclassical
model [13,17], where the dynamical behaviour of the wave packet changes abruptly from the
continuum to the Bloch regime, our quantum-mechanical simulations show that the periodic
‘revival’ behaviour ofz simply begins to disappear and the wave packet does not recover its
initial amplitude, thus entailing another interpretation of such a theoretical bifurcation point.
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Figure 1. A sequence of numerical simulations of the wave packet’s mean positionz(t) ≡ 〈x〉 (in
units of the cell constanta) versus time (in units of eitherτ or τB ), whereτ = π

√
2/(Ka2A) is the

period of the harmonic oscillator in the ‘continuum regime’ (in units of ¯h) andτB = 2π/(αa) is
the period of the Bloch oscillator (in units of ¯h). K is the ‘spring’ constant in the potential energy

(19). The initial wave packet is the projection onto the lattice of the normalized9(t0) = Be−Cx2

(wherex is a continuous variable,B = (Ka2/(2π2A))1/8, andC =
√
K/(8Aa2)); the one-

dimensional crystal model consists of 128 lattice sites for computational purposes. Each simulation
was performed iteratively with an infinitesimal time increment1t = τ/1000; the sum in (15) was
approximated by eleven Bessel functions ranging fromJ−5 up toJ5. For such approximations, the
accumulated relative error in the probability amplitude

∑
m |Cm|2 is 0.77% after a timet = 400τ .

ForA = 125Ka2 and unit values ofK anda, we show the cases corresponding to the following
force-field magnitudesα (in units ofKa): (a) 10, (c) 31.62, (d) 50. In (a) and (d), the visual
profile of the peaks of thez-oscillations reveals the periodic ‘revival’ effect, after damping intervals
wherez ‘rests’ at the bottom of a potential well (centred at the position indicated inside brackets
on the right-hand sides of the figures). The insets (b) of (a) and (e) of (d) show the details of
thez-oscillations in the ‘continuum’ and ‘Bloch’ regimes respectively, with the indicated ‘period’
(arrows). In these plots,τ = 3.16τB . Case (c) shows a complete lack of both the oscillatory and
the periodic revival behaviours ofz; a finer simulation incorporating ten equidistant values ofα

in the interval(10, 50) would show that the critical valueα = √1000= 31.6227. . . predicted by
the semiclassical model is indeed a ‘bifurcation’ point separating the ‘continuum’ regime from the
‘Bloch’ regime.

The revivals just described above show that the interference of the wave packet’s com-
ponents jumps alternatively from a destructive effect to a constructive one. It is interesting to
notice that similar revival effects have been observed in numerical simulations using Cayley’s



3736 D Sanjińes and J-P Gallinar

method [21] pertaining to quite different physical situations, where the wave packet is placed
in aD = 1 SSL under the influence of a homogeneous and static electric field. In this case,
the damping effect ofz is attributed [21] to the interface roughness at the boundaries of the
potential wells rather than to scattering mechanisms, and the revival effect (amplitude recovery)
is related to the fact that only a few successive unit cells are initially occupied. Of course, in
an actual crystal our revival effects for the parabolic potential might be masked—for example,
by scattering and/or Coulomb interactions—because of the long-term nature of such revivals
in terms of the Bloch oscillation period, making, thus, their eventual experimental observation
extremely difficult, though theoretically possible.

As shown in appendix B, the extension of (13) to the case of time-dependent potentials is
straightforward, and permits one to study easily the various effects associated with ‘dynamic
localization’ [7]; an expanded version of our work [22] dealing also with such effects will
be published elsewhere. Additionally, in a more general and wider-reaching scheme, the
interest for our formulation (namely, equation (13)) of the intraband wave packet’s dynamics
under the influence of inhomogeneous fields is to be related to the ‘few-body problem on a
lattice’ [14], where the ‘quasiparticles’ will move under the influence of their mutual position-
dependent interactions. Few-body composites [14], such as the exciton [23] or the ‘trion’ [24]
(an exciton plus a hole or plus an electron), moving in one dimension (D = 1), can thus
be easily considered in our formalism [22] by suitable reinterpretation of equation (13) in a
higher-dimensional (D > 1) space.

In summary, we have developed, in a representation of Wannier functions, a novel
expression (13) for studying the intraband Bloch oscillation of an electronic wave packet
as an application of the pseudo-spectral method. The validity and versatility of our expression
was checked analytically for the homogeneous and static electric field in a simple cubic lattice.
It was also checked numerically for a one-dimensional parabolic potential associated with a
position-dependent electric field, as an illustrative example of its predictive power. In fact,
it is possible that our pseudo-spectral approach would appear to provide [25], at least for
short time intervals, an accurate approximate solution of the well known Houston differential
equations [26] to the extent that interband transition terms can be totally discarded, when
studying electronic motion in crystalline solids induced by electric fields [25]. Finally, we
have also laid the groundwork for future studies along these lines, which should prove to be
both interesting and fruitful.
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Appendix A

In this appendix we prove by iteration equation (17) in the text, making use of the pseudo-
spectral result (13). We do this by first considering the time evolution of theD = 1 wave
packet given by equation (18). We also give an estimate of the numerical error of the predicted
wave packet’s mean position

z(t) ≡ 〈x〉 =
∑
n

n|Cn(t)|2.
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The pseudo-spectral result (13) gives forD = 1 upon a first iteration that

Cn(1t) =
∑
m

Cm(0)e
−iλ′(n+m)im−nJm−n(τ1) (A.1)

whereτ1 ≡ 4Aλ, andλ′ ≡ αλ, with λ ≡ 1t/2.
Let us now assume the inductive hypothesis, given by

Cn(l 1t) =
∑
m

Cm(0)e
−ilλ′(n+m)im−nJm−n(τl) (A.2)

whereτl is recursively given by

τl = τl−1eiλ′ + τ1e−iλ′(l−1) (A.3)

with τ0 ≡ 0, andl = 1, 2, 3, . . . , p.
We now show that (A.2) and (A.3) are also valid forl = p + 1. In effect,

Cn((p + 1)1t) =
∑
m

Cm(p1t)e
−iλ′(n+m)im−nJm−n(τ1)

=
∑
m

{∑
q

Cq(0)e
−ipλ′(q+m)iq−mJq−m(τp)

}
e−iλ′(n+m)im−nJm−n(τ1) (A.4)

where (A.1) and (A.2) have been used.
From (A.4), we obtain

Cn((p + 1)1t) =
∑
q

Cq(0)i
q−ne−iλ′(n+pq)

∑
m

e−iλ′m(p+1)Jm−n(τ1)Jq−m(τp)

=
∑
q

Cq(0)i
q−ne−iλ′(n+pq)e−iλ′n(p+1)ei(q−n)σ Jq−n(τp+1). (A.5)

To sum overm in (A.5) we have used Graf’s addition formula [20], according to which
τp+1 andσ must satisfy the single ‘triangle’ relationship

τp = −τ1e−iλ′(p+1) + τp+1e
iσ . (A.6)

With the necessary identificationσ = −λ′, given by Graf’s addition formula [20], we finally
obtain that

Cn((p + 1)1t) =
∑
q

Cq(0)e
−i(p+1)λ′(n+q)iq−nJq−n(τp+1). (A.7)

Equations (A.7) and (A.6) together prove the inductive hypothesis forl = p + 1.
The appropriate solution of the difference equation (A.3) forτl is

τl = τ1

sinλ′
sinlλ′ (A.8)

which when inserted in (A.2) with the identificationt = l 1t , in the limit l→∞ and1t → 0,
leads finally to the exact result

Cn(t) =
∑
m

Cm(0)e
−iα(n+m)t/2im−nJm−n

[
4A

α
sin

(
1

2
αt

)]
proving equation (18) in the text, and as a consequence, with the appropriate renormalizations
α→ α cos8j (j = 1, 2, 3) along the simple-cubic crystal axes, proving equation (17), too.

We now give an estimate of the error in the numerically predictedz(t) by making use
of the formal analogy between (A.2) and equation (18). As shown in [5], the exactzex(t)

calculated from (18) is given by

zex(t) = zex(0) +
2A

α
|S0| [cosθ0 − cos(αt + θ0)] (A.9)
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where

S0 ≡
∑
m

C∗m(0)Cm−1(0) = |S0| eiθ0. (A.10)

Sinceτl in (A.2) or (A.8) can be written as

τl = α 1t/2

sin(α 1t/2)

[
4A

α
sin

(
1

2
αt

)]
(A.11)

then it follows that the numerically predictedz(t) calculated from (A.2) can be expressed as

z(t)− z(0) =
[

sin(α 1t/2)

α 1t/2

]−1

[zex(t)− zex(0)] . (A.12)

In consequence, since1t → 0, the exact amplitude of the Bloch oscillation differs from the
pseudo-spectral numerical one only by a ‘diffracting’ factor sin(α 1t/2)/ [α 1t/2] close to
unity, while the frequency and phase remain identical to the exact ones at all times.

Appendix B

In this appendix we generalize equation (13) so as to include the effects due to time-dependent
external electric fields, and we also verify that the resulting expression yields a rigorously
unitary time evolution of the wave packet.

The formal solution of the time-dependent Schrödinger equation i ¯h ∂9/∂t = H(t)9 for
a general time-dependent one-particle HamiltonianH(t) = T (p) + V (r, t) is given by the
time-ordered formula [15]

9(r, t) = T
(

exp

(
−i
∫ t

t0

H(t ′) dt ′
))
9(r, t0) (B.1)

(with h̄ = 1). For a timet = t0 +1t , with an infinitesimal1t , the result of the time ordering
T of the evolution operator

exp

(
−i
∫ t

t0

H(t ′) dt ′
)

in (B.1), when approximated up to the order of(1t)4, can be shown to be given by

T

(
exp

(
−i
∫ t0+1t

t0

H(t ′) dt ′
))
= exp

(
−i
∫ t0+1t

t0

H(t ′) dt ′
)

+
1t3

12
[H0, Ḣ0] + O(1t4)

(B.2)

where the commutator [H0, Ḣ0] ≡ H0Ḣ0− Ḣ0H0 is, in general, different from zero given the
non-commutativity of the operatorsT (p) and∂V (r, t)/∂t . We have definedH0 ≡ H(t0) and
Ḣ0 ≡ [∂H(t)/∂t ]t0. A proof of (B.2) will be given after equation (B.5) below.

Using (B.2), we can write (B.1) (to order(1t)3) as

9(r, t0 +1t) = exp

(
−i1t T (p)− i

∫ t0+1t

t0

V (r, t ′) dt ′
)
9(r, t0) + O(1t3)

= exp

(
−(i/2)

∫ t0+1t

t0

V (r, t ′) dt ′
)

e−i1t T (p)

× exp

(
−(i/2)

∫ t0+1t

t0

V (r, t ′) dt ′
)
9(r, t0) + O(1t3) (B.3)



Study of the single-band Bloch oscillation effect 3739

where the Baker–Campbell–Hausdorff formula [16] has been invoked. Equation (B.3) is the
generalization of (2) for time-dependent electric fields. Since∫ t0+1t

t0

V (r, t ′) dt ′ = 1t V (r, t0) +
1

2
(1t)2 [∂V (r, t)/∂t ]t0 + O(1t3) (B.4)

with some additional manipulations, we finally obtain our corresponding generalization of
equation (13), as the time-iterative formula given by

Cn+1
R′′ =

∑
R

CnR exp
{−i

[
λ(V nR + V nR′′) + λ2(∂V nR/∂t + ∂V nR′′/∂t)

]}
F(R−R′′) (B.5)

whereCnR ≡ CR(t0 + n1t), V nR ≡ V (R, t0 + n1t), ∂V nR/∂t ≡ [∂V (R,t)/∂t ]t0+n1t and
λ ≡ 1t/2, for n = 0, 1, 2, 3, . . ..

To conclude this demonstration, let us now prove the validity of (B.2). To this end let
us develop the first few terms of the time-ordered evolution operator on the left-hand side of
equation (B.2) as

T

(
exp

(
−i
∫ t0+1t

t0

H(t ′) dt ′
))
= 1 + (−i)

∫ t0+1t

t0

dt ′ H(t ′)

+ (−i)2
∫ t0+1t

t0

dt ′ H(t ′)
∫ t ′

t0

dt ′′ H(t ′′)

+ (−i)3
∫ t0+1t

t0

dt ′ H(t ′)
∫ t ′

t0

dt ′′ H(t ′′)
∫ t ′′

t0

dt ′′′ H(t ′′′)

+ (−i)4
∫ t0+1t

t0

dt ′ H(t ′)
∫ t ′

t0

dt ′′ H(t ′′)
∫ t ′′

t0

dt ′′′ H(t ′′′)
∫ t ′′′

t0

dt ′′′′ H(t ′′′′) + . . ..

(B.6)

Each of the above four multiple-integral terms in (B.6) can be calculated explicitly (up to
O(1t4)), i.e.,∫ t0+1t

t0

dt ′ H(t ′) = 1t

1!
H0 +

1t2

2!
Ḣ0 +

1t3

3!
Ḧ0 (B.7)∫ t0+1t

t0

dt ′
(
H(t ′)

∫ t ′

t0

dt ′′ H(t ′′)
)
= 1t2

2!
H 2

0 +
1t3

3!
(2Ḣ0H0 +H0Ḣ0) (B.8)∫ t0+1t

t0

dt ′
(
H(t ′)

∫ t ′

t0

dt ′′ H(t ′′)
∫ t ′′

t0

dt ′′′ H(t ′′′)
)
= 1t3

3!
H 3

0 (B.9)∫ t0+1t

t0

dt ′
(
H(t ′)

∫ t ′

t0

dt ′′ H(t ′′)
∫ t ′′

t0

dt ′′′ H(t ′′′)
∫ t ′′′

t0

dt ′′′′ H(t ′′′′)
)
= O(1t4) (B.10)

whereḦ0 ≡
[
∂2H(t)/∂t2

]
t0
. Since (B.9) is the last significant term of the expansion of (B.6)

up to O(1t4), we can write the left-hand side of (B.2) as

T

(
exp

(
−i
∫ t0+1t

t0

H(t ′) dt ′
))
= 1− i

1t

1!
H0 +

1t2

2!
(−iḢ0 −H 2

0 )

+
1t3

3!
(−iḦ0 − 2Ḣ0H0 −H0Ḣ0 + iH 3

0 ) + O(1t4). (B.11)
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On the other hand, we have the expansions

exp

(
−i
∫ t0+1t

t0

H(t ′) dt ′
)
= exp

[
−i

(
1t

1!
H0 +

1t2

2!
Ḣ0 +

1t3

3!
Ḧ0

)]
+ O(1t4)

= 1− i
1t

1!
H0 +

1t2

2!
(−iḢ0 −H 2

0 )

+
1t3

3!

(
−iḦ0 − 3

2
Ḣ0H0 − 3

2
H0Ḣ0 + iH 3

0

)
+ O(1t4). (B.12)

Equation (B.2) follows from comparing (B.11) with (B.12), thus achieving the aforementioned
demonstration of (B.2), and concluding our proof.

Although we have already pointed out that equation (15) yields a unitary time evolution
by using analytical properties of Bessel functions, we now present a formal general proof of
unitarity starting from equation (B.5) above. To this end, let us introduce the compact notation

〈Cn+1|Cn+1〉 ≡
∑
R′
|CR′(t0 + (n + 1)1t)|2 (B.13)

and

f (V nR + V nR′′) ≡ λ(V nR + V nR′′) + λ2(∂V nR/∂t + ∂V nR′′/∂t). (B.14)

Assuming that our potentialV (r) is a real-valued function, by substituting (B.5) into (B.13)
we obtain

〈Cn+1|Cn+1〉 =
∑
RR′′

(CnR)
∗CnR′′e

−if (V n
R′′−V nR)

∑
R′
F ∗(R−R′)F (R′′ −R′). (B.15)

The sum over the product of the ‘kernel’ integralsF in (B.15) is performed by substituting the
explicit form forF given by (10), i.e.,∑
R′
F ∗(R−R′)F (R′′ −R′) = 1

(v∗)2

∫
1−BZ

dk′ dk′′ e2iλ[T (k′)−T (k′′)]

× ei(k′·R−k′′·R′′)∑
R′

eiR′·(k′′−k′). (B.16)

From the identities related to Fourier analysis of periodic systems [17], it is known that∑
R′

eiR′·(k′′−k′) = Nδk′,k′′ (B.17)

whereR′ runs through theN sites in the Bravais lattice of a crystal sample inD = 3 dimensions
with volumeV = Nv (v being the volume of the primitive cell in the direct lattice);k′,k′′

are arbitrary vectors in the first Brillouin zone (1-BZ) which are consistent with the Born–von
Karman boundary conditions, andδk′,k′′ is the Kronecker delta. By suitable interpretation of
the 1-BZ integral [17], we now write∫

1−BZ
dk′′ e−2iλT (k′′)e−ik′′·R′′δk′,k′′ = (2π)3

Nv

∑
k′′

e−2iλT (k′′)e−ik′′·R′′δk′,k′′

= (2π)3

Nv
e−2iλT (k′)e−ik′·R′′ . (B.18)

Substituting (B.18) into (B.16), we finally obtain [17]∑
R′
F ∗(R−R′)F (R′′ −R′) = (2π)3

(v∗)2v

∫
1−BZ

dk′ eik′·(R−R′′) = δR,R′′ (B.19)

which immediately yields

〈Cn+1|Cn+1〉 =
∑
RR′′

(CnR)
∗CnR′′e

−if (V n
R′′−V nR)δR,R′′ = 〈Cn|Cn〉 (B.20)

thus ending our proof of unitarity.
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Appendix C

In this appendix we will present another analytical application of our equation (13) for the
infinitesimal time evolution of an electronic wave packet. In this case, let us consider the one-
dimensional (D = 1) single-band kinetic energyT (k) = k2/2M representing the geometrical
abstraction known as the ‘empty-lattice’ model [19], wherek ∈ [−π/a, π/a] (periodically
extended over the reciprocal lattice) for aD = 1 crystal with a lattice constanta. Thus,T (k)
can be expressed as the Fourier series

T (k) = k2

2M
= 1

2a2M

[
π2

3
− 4

(
cosak

12
− cos 2ak

22
+

cos 3ak

32
− · · ·

)]
(C.1)

which corresponds to the form of the single-band kinetic energy (4) with hopping matrix
elementstlm in one dimension given by

tlm = (1− δl,m) (−1)l−m

a2M(l −m)2 + δl,m
π2

6a2M

(with δl,m the Kronecker delta). The above represents a case whereall of the intraband hopping
matrix elementstlm are taken into account, and not only the nearest-neighbour ones as is done
in the kinetic energy model forT (k) given by equation (14).

The substitution ofT (k) = k2/2M into (10) leads to the evaluation of the integral

F(m) = a

2π

∫ π/a

−π/a
dk e−ikmae−2iλk2/2M = 1

π

∫ π

0
dy cos(my)e−iηy2

(C.2)

with η ≡ λ/Ma2 = 1t/2Ma2, wherey ≡ ka andm is an integer number.F(m) in (C.2) can
remarkably be expressed in terms of the Fresnel integrals [20]

C(x) ≡
∫ x

0
dξ cos

(
π

2
ξ2

)
S(x) ≡

∫ x

0
dξ sin

(
π

2
ξ2

) (C.3)

which are to be used in the expressions [20]∫
dy cos(ηy2 +my) =

√
π

2η

[
cos

(
m2

4η

)
C+
m(y, η) + sin

(
m2

4η

)
S+
m(y, η)

]
∫

dy sin(ηy2 +my) =
√
π

2η

[
cos

(
m2

4η

)
S+
m(y, η)− sin

(
m2

4η

)
C+
m(y, η)

] (C.4)

where some of the auxiliary functions

C±m(y, η) ≡ C
(
ηy ±m/2√
ηπ/2

)
S±m(y, η) ≡ S

(
ηy ±m/2√
ηπ/2

) (C.5)

defined above have been introduced. Finally, combining the expressions given as (C.4), equ-
ation (C.2) can be written after some manipulations in the useful and compact form

F(m) = 1√
8πη

eim2/4η
[
C+
m(π, η)− iS+

m(π, η) +C−m(π, η)− iS−m(π, η)
]
. (C.6)



3742 D Sanjińes and J-P Gallinar

References

[1] Mendez E E and Bastard G 1993Phys. Today(June) 34
[2] See, for example,

Krieger J B and Iafrate G J 1988Phys. Rev.B 386324
Zak J 1988Phys. Rev.B 386322

[3] Bloch F 1928Z. Phys.52555
[4] Press W H, Flannery B P, Teukolsky S A and Vetterling W T 1986Numerical Recipes: the Art of Scientific

Computing(New York: Cambridge University Press)
[5] Bouchard A M and Luban M 1995Phys. Rev.B 525105
[6] Luban M 1985J. Math. Phys.262386
[7] Dunlap D H and Kenkre V M 1986Phys. Rev.B 343625

Zhao X-G 1991Phys. Lett.A 155299
[8] Holthaus M and Hone D W 1996Phil. Mag.B 74105
[9] Nazareno H N, da Silva C A A andBrito P E 1994Phys. Rev.B 504503

Nazareno H N and Lepine Y 1997Phys. Rev.B 556661
[10] Gottlieb D and Orszag S A 1977Numerical Analysis of Spectral Methods: Theory and Applications(Phila-

delphia, PA: SIAM-CBMS)
[11] DeVries P L 1994A First Course in Computational Physics(New York: Wiley)
[12] DeVries P L 1991Comput. Phys. Commun.6395
[13] Gallinar J-P and Chalbaud E 1991Phys. Rev.B 432322

Chalbaud E, Gallinar J-P and Mata G 1986J. Phys. A: Math. Gen.19L385
[14] Mattis D C 1986Rev. Mod. Phys.58361
[15] Liboff R L 1980Introductory Quantum Mechanics(Oakland, CA: Holden-Day)
[16] Swanson M 1992Path Integrals and Quantum Processes(Boston, MA: Academic)
[17] Ashcroft N W and Mermin N D 1976Solid State Physics(Philadelphia, PA: Saunders College)
[18] See, for example,

Leo K, Bolivar P H, Br̈uggemann F, Schwedler R and Köhler K 1992Solid State Commun.84943
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